
N A S A  T N  D-5425 
z, 1 
-_ - -  

LOAN COPY: REmF 

KlRIIANQ AFB, N 
AFWL LWLA-2 

NUMERICAL INTEGRATION 

TRAJECTORY PRQGRAM 
I N  A RIGID-BODY 

by John Edd Moore 

George C, Marsball Space Flight Center 
Marsball, A la* 
N A T I O N A L  A E R O N A U T I C S  A N D  SPACE A D M I N I S T R A T I O N  W A S H I N G T O N ,  D .  C. S E P T E M B E R  1969  



TECH LIBRARY KAFB, NM 

12. SPONSORING AGENCY NAME AND ADDRESS 

2. GOVERNMENT ACCESSION NO. I 1.  REPORT NO. 

NASA TN D - 5 4 2 5  
1. TITLE AND SUBTITLE 

NUMERICAL INTEGRATION I N  A RIQID-BODY 
TRAJECTORY PROGIZAM 

7. AUTHOR(S) 

John Edd Moore 

Aero-Astrodynamics Labora tory  
Marsha l l  Space F l i g h t  Center ,  Alabama 35812 

3. PERFORMING ORGANIZATION NAME AND ADDRESS 

13. T Y P E  OF REPORT & PERIOD C( 

TECHNICAL NOTE 

RECIP IENT 'S  CATALOG NO. i 3. 

21. NO, OF PAGES 

104 U 

5.  REPORT DATE I September 1969 ~- 

1 Mi53- 6. PE<fORMlNG ORGANIZATION C 

8. PERFORMING ORGANIZATION REI 

110. WORK UNIT, NO. 

22. PRICE 

$3.00 

. CONTRACT OR GRANT NO. I' 
National Aeronaut ics  and Space Admin i s t r a t ion  
Washington, D.C. 20546 114. SPONSORING AGENCY CODE 

15. SUPPLEMENTARY NOTES 
This  work w a s  submitted t o  t h e  Graduate School o f  Vanderb i l t  Un ive r s i ty ,  Nashvi 

Tennessee, i n  p a r t i a l  f u l f i l l m e n t  of  t h e  requi rements  f o r  t h e  degree  of Master o f  
Science.  
16, ABSTRACT 

This  r e p o r t  compares t h e  fou r th -o rde r  Runge-Kutta numerical  i n t e g r a t i o n  techniq  
w i t h  two of  D r .  E. B. Shanks' numerical  i n t e g r a t i o n  formulas i n  a mathematical  model 
used f o r  computing r i g i d  body, f i r s t - s t a g e  t r a j e c t o r i e s  o f  a Sa turn  space v e h i c l e .  
scope o f  t h e  problem i s  t o  d e s c r i b e  t h e  mathematical  model and t o  p r e s e n t  a d e r i v a t i  
o f  t h e  d i f f e r e n t i a l  equa t ions  o f  motion which it comprises;  t o  e s t a b l i s h  a b a s i s  f o r  
comparing t h e  i n t e g r a t i o n  techniques ;  and t o  gene ra t e  s u f f i c i e n t  comparison d a t a  t o  
e s t a b l i s h  which i n t e g r a t i o n  technique  i s  t h e  most p r a c t i c a l  t o  use  i n  t h i s  model f r o  
a s t andpo in t  o f  computer r u n  time and accuracy .  

A s  an  employee of  t h e  Nat iona l  Aeronaut ics  and Space Adminis t ra t ion ,  t h e  author 
r equ i r ed  t o  develop a computer program f o r  s imula t ing  t h e  f i r s t - s t a g e  f l i g h t  oE a SE 
space  v e h i c l e .  The r e s u l t i n g  program r e q u i r e s  t h a t  s i x  f i r s t - o r d e r  and t h r e e  secon, 
o r d e r  d i f f e r e n t i a l  equa t ions  be numer ica l ly  so lved  t o  p r e d i c t  t he  t r a n s l a t i o n a l  and 
r o a a t i o n a l  motion o f  a space  v e h i c l e .  An e f f i c i e n t  i n t e g r a t i o n  technique  had t o  be 
chosen t h a t  would provide  a s o l u t i o n  w i t h i n  t h e  accuracy  o f  t h e  d a t a  which d e s c r i b e  
v e h i c l e  dynamic response  c h a r a c t e r i s t i c s .  I n  a sea rch  f o r  t h e  most accep tab le  integ 
t i o n  technique ,  t h e  fou r th -o rde r  Runge-Kutta formula and two o f  D r .  E .  B .  Shanks' 
i n t e g r a t i o n  formulas were each  used i n  t h e  program t o  compute t h e  f i r s t - s t a g e  trajec 
o f  a t y p i c a l  Sa tu rn  v e h i c l e .  Comparative d a t a  were genera ted  f o r  each formula over 
range  o f  i n t e g r a t i o n  s t e p  s i z e s .  An a n a l y s i s  o f  t h e  d a t a  showed a fou r th -o rde r  forn 
developed by D r .  Shanks t o  be t h e  most p r a c t i c a l  i n t e g r a t i o n  technique  t o  use  i n  con 
p u t e r  programs of  t h i s  type  from a s t andpo in t  of  computation t i m e ,  accuracy ,  and s t t  
t y  o f  t h e  s o l u t i o n .  

17. KEY WORDS 18. DISTRIBUTION STATEMENT 

U n c l a s s i f i e d  - Unlimited 

*For sale by the  Clearinghouse f o r  Federa l  Scientific and Technical Information 
Springfield, Virginia 22151 



ACKNOWLEDGEMENTS 

The author wishes to express his  appreciation to Professor  E.  B. Shanks 

and Professor  J. R .  W-esson of the Vanderbilt University Department of 

Mathematics for  their  suggestions and encouragement during the preparation 

of this thesis.  Also, three people in the Aero-Astrodynamics Laboratory at  

Marshall Space Flight Center deserve special  thanks. Appreciation is 

extended to M r .  C .  R. Fulmer for  a technical review of the paper and to 

Mrs .  Sarah Hightower for  technically editing the paper.  A debt is owed to 

Mrs.  Evelyn Car t e r  for an excellent job in preparing the final copies of the 

illustrations in the paper. 

ii 



TABLE OF CONTENTS 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

Chapter 

I. SATURN VEHICLE SUBSYSTEMS AND PHYSICAL 
PROPERTIES O F  THE EARTH TO BE SIMULATED . . . .  3 

11. REFERENCE COORDINATE SYSTEMS AND 
TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . .  13 

111. EQUATIONS O F  MOTION. . . . . . . . . . . . . . . . . . . . . .  24 

IV. FORCE AND MOMENT EQUATIONS . . . . . . . . . . . . . .  48 

V. NUMERICAL INTEGRATION . . . . . . . . . . . . . . . . . . .  68 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104 

iii 



LIST O F  TABLES 

Table 

I. 

2. 

3. 

4. 

5. 

6 .  

7. 

8. 

9. 

Page 

Solution of Trajectory at 70 Seconds . . . . . . . . . . . .  82 

Solution of Trajectory at 80 Seconds . . . . . . . . . . . .  83 

Solution of Trajectory at  90 Seconds . . . . . . . . . . . .  84 

One-Sigma Data Tolerances . . . . . . . . . . . . . . . . . .  85 

Effects of One-Sigma Data Tolerances on 
Solution of Trajectory a t  70 Seconds . . . . . . . . . . . .  86 

Effects of One-Sigma Data Tolerances on 
Solution of Trajectory at 80 Seconds . . . . . . . . . . . .  87 

Effects of One-Sigma Data Tolerances on 
Solution of Trajectory at 90 Seconds . . . . . . . . . . . .  88 

. . . . . . . . . . . . . . . .  Integration E r r o r  Percentages 89 

Formula 4-3 Solution of Trajectory with 
Variable Step-Size 90 . . . . . . . . . . . . . . . . . . . . . . . .  

iv 



LIST OF ILLUSTRATIONS 

Figure 

1. 

2 .  

3. 

4. 

5. 

6. 

7. 

8. 

9. 

1 0 .  

11. 

12. 

13. 

14. 

15.  

16. 

17. 

Page 

5 Saturn V Vehicle Configuration and Sign Convention . . .  

The Saturn V Inertial Platform Gimbal Configuration . . 6 

Eulerian Angles . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

The Fischer  Ellipsoid . . . . . . . . . . . . . . . . . . . . . . .  11 

Space-fixed Coordinate Systems . . . . . . . . . . . . . . . .  14 

Earth-fixed Coordinate Systems . . . . . . . . . . . . . . . .  15 

Transformations for  Right-hand Rotations . . . . . . . . .  1 9  

Rotation of the E a r t h .  . . . . . . . . . . . . . . . . . . . . . . .  21 

Relative Position of Surface Triad and 
Launch Point T r i a d .  . . . . . . . . . . . . . . . . . . . . . . . .  26 

Relative Position of a Vehicle Before Launch . . . . . . .  31 

Relative Position of a Vehicle A f t e r  Launch . . . . . . . .  33 

Infinitesimal Rotation . . . . . . . . . . . . . . . . . . . . . . .  42 

Saturn Control System Block Diagram . . . . . . . . . . . .  50 

Resolution of Engine Forces  . . . . . . . . . . . . . . . . . . .  55 

Frame-Fixed Coordinate System . . . . . . . . . . . . . . . .  58 

Aerodynamic Forces  . . . . . . . . . . . . . . . . . . . . . . . .  61 

Altitude of Vehicle . . . . . . . . . . . . . . . . . . . . . . . . .  66 

V 

I 



Page 

Wind Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

Figure 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26.  

t +h n 

tn+h 

Regulator for YS = s (dYs/dt)dt . . . . . . . . . . . .  92 
P t  

n 

t +h 
n 

Regulator for ZS = s (dZ /dt)dt  . . . . . . . . . . . .  93 
S 

n P t  

Regulator fo r  ( dXs/dt) =I ( d2X /dt2) dt . . . . . . . . .  94 
S 

tn 

tn+h 

Regulator for (dYs/dt) = s 
n t 

t +h n 

tn 

(d2Y /dt2)dt 
S 

Regulator for (dZs/dt) = (d2Z /dt2)dt 
S 

tn+h 

Regulator for w = (dwx/dt)dt . . .  
X 

tn 

tn+h 

. 95 

. e 96 

. . . .  97 

Regulator for  w = s ( d o  /dt)dt  . . . . . . . . . . . .  98 
Y 

n Y t  

27. 

vi 



I' 
I 111111 11111 111 I I11111ll1111111lIIIIlIIIIIII l1l1111Il1 

Figure 

28. 

29. 

30. 

31. 

Page 
t +h 
n 

Regulator for q = ( d q  /dt)dt  . . . . . . . . . . . .  100 
P 

n 

tn+h 

P t  

Regulator for q = ( d q  /dt) dt  . . . . . . . . . . . .  I 0 1  
Y 

n 

tn+h 

Y t  

Regulator for cp = (dq r /d t )d t  . . . . . . . . . . . .  102 

n t r 

Root-Sum-Square of Regulators for  Integrating 
Pitch and Yaw Angular Acceleration 
(F igu res  26 and 27) . . . . . . . . . . . . . . . . . . . . . . . .  103 

vii 

I .. ...- ......... ~- 



I 

INTRODUCTION 

The purpose of this thesis is to compare the fourth-order Runge-Kutta 

numerical  integration technique with two of Dr.  E .  B. Shanks' numerical  

integration formulas in a mathematical model used for  computing rigid body, 

f irst-stage t ra jector ies  of a Saturn space vehicle. The scope of the problem is 

to  describe the mathematical model and to present a derivation of the differen- 

tial equations of motion which it comprises;  to establish a basis  for comparing 

the integration techniques; and to generate sufficient comparison data to 

establish which integration technique is the most practical to use in this model 

from a standpoint of computer run t ime and accuracy. 

A s  an employee of the National Aeronautics and Space Administration, 

the author was required to develop a computer program for simulating the 

first-stage flight of a Saturn space vehicle. The result ing program requires  

that six f i rs t -order  and three second-order differential equations be numeri-  

cally solved to  predict the translational and rotational motion of a space 

vehicle. 

a solution within the accuracy of the data which describe the vehicle dynamic 

response character is t ics .  In a sea rch  for  the most  acceptable integration 

technique, the fourth-order Runge-Kutta formula and two of Dr .  E.  B. Shanks' 

An efficient iotegration technique had to be chosen that would provide 



integration formulas were each used in the program to compute the first-stage 

trajectory of a typical Saturn vehicle. 

each formula over a range of integration s tep s izes .  

in Chapter V.  

Comparative data were generated fo r  

These data are analyzed 

The first four chapters define the mathematical model in which the 

integration formulas are compared. This  model consists of several  sma l l e r  

models that  simulate the vehicle subsystems and the physical properties of the 

ear th .  These subsystems and the ear th’s  physical character is t ics  are 

described in Chapter I. The different coordinate systems to  which the model 

refers motion and the related transformations are defined in Chapter 11, and 

the differential equations of motion are derived in Chapter III. 

a definition of the mathematical model is completed with a description of the 

fo rces  and moments that act upon a space vehicle during flight. 

In Chapter IV, 

2 



CHAPTER I 

SATURN VEHICLE SUBSYSTEMS AND PHYSICAL PROPERTIES 

O F  THE EARTH TO BE SIMULATED 

In order  t o  design and build an extremely complex and expensive vehicle 

such as the Saturn V, a means of simulating o r  predicting how a space vehicle 

with specific subsystems and dynamic character is t ics  will react during actual 

flight is mandatory. T o  this end, mathematical models are developed for each 

subsystem and then combined into a total model of the vehicle. 

ear th 's  shape, gravity field, and atmosphere are merged with the vehicle 

model to establish a two-body system. The total model is then programmed on 

an electronic computer and used for predicting the response of a vehicle to 

various atmospheric conditions and vehicle tolerances.  

Models of the 

The Saturn V subsystems that guide and control the vehicle will be 

described first. A knowledge of these subsystems and their  functions is 

necessary before a model can be developed to simulate them. 

In this paper the terms navigation, guidance, and control are defined 

a s  follows: 

Navigation is the determination of the vehicle's present position and 

velocity f rom measurements  made onboard the vehicle. 

3 



Guidance is the computations of maneuvers necessary to  achieve the 

desired flight path. 

Control is the execution of the guidance maneuver by controlling the 

direction of par t  of the vehicle's thrust .  

The Saturn V launch vehicle is guided during powered flight by naviga- 

tion, guidance, and control equipment located in the Instrument Unit ( IU)  . An 

inertial  platform is used to  provide three orthogonal space -stabilized directions 

fo r  acceleration and attitude measurements.  A launch vehicle digital computer 

(LVDC) solves guidance equations, and an analog flight control computer 

executes flight control functions. Analog signals are converted to digital 

numbers and vice ve r sa  by means of a launch vehicle data adapter (LVDA) . 

The vehicle-fixed coordinate system and the Saturn sign convention for 

control variables are presented in Figure i .  Rotational motion about the X 

axis is called rol l  motion, rotational motion about the Y axis  is called 

pitch motion, and rotational motion about the Z 

motion. 

m 

m 

axis is r e fe r r ed  to as yaw m 

Figure 2 presents the Saturn V inertial  platform configuration. The 

gimbal system allows the vehicle to rotate freely without disturbing the gjrro- 

stabilized inertial  gimbal. An orthogonal, right-handed, space-fixed coordi- 

nate system (X,  Y, Z )  is established by the input axes  of three single-degree- 

of-freedom gyroscopes. 

with respect  to this coordinate system. 

mounted on the platform's inertial  gimbal, measu re  the three components of 

Acceleration and attitude measurements are taken 

Three integrating accelerometers ,  

4 



N O T E S :  

1. ALL SIGNAL ARROWS INDICATE POSITIVE 

2. VEHICLE PITCHES AROUND THE “Y”  AXIS. 
3. ENGINE ACTUATOR LAYOUTS SHOWN AS VIEWED 

4. DIRECTIONS AND POLARITIES SHOWN ARE 

VEHICLE MOVEMENTS. 

FROM AFT END OF VEHICLE. 

TYPICAL FOR ALL STAGES. 
5. t B  INDICATES ENGINE DEFLECTION 

REQUIRED TO CORRECT FOR 
POSIT I VE VEHICLE MOVE M E N T. 

6. C G :  CENTER OF GRAVITY. 
B : THRUST VECTOR 
ANGULAR DEFLECTION. 

INSTRUMENT 

S- IVB STAGE 

S - l l  STAGE 

S-IC AND S - I 1  
ACTUATOR LAYOUTS 

(TYPICAL) 

FIG. 1 .  SATURN V VEHICLE 
CONFIGURATION AND SIGN CONVENTION 
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N O T E :  

I A  : I N P U T  A X I S  

O A  O U T P U T  A X I S  

SRA : S P I N  R E F E R E N C E  A X I S  

A C C  E L  E ROME T E R S  

MOTOR 

FIG.  2 .  T H E  SATURN V 
I N E R T I A L  P L A T F O R M  GIMBAL CONFIGURATION 
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velocity. 

pivot points. 

Vehicle attitude is measured by resolvers  located at the gimbal 

The three angles measured by the inertial  platform resolvers  are 

classically known as Eulerian angles, a discussion of which should aid in 

understanding the function of the platform. 

Eulerian angles evolved from the problem of describing the orientation 

of a rigid body that is free to turn about a point 0. One solution would be to 

assign the coordinates of two particles in the body, not on the same  line 

through 0. Because this method involves the use of six parameters  that cannot 

be varied independently, it is rejected.  

the orientation of the body with respect  to a reference frame by the use of three 

Eulerian angles. 

A much s impler  method is to define 

Figure 3 shows two orthogonal right-handed t r iads  (X, Y,  2 )  and 

(Xm, Y Z ) with their  origins at  point 0.  The triad ( X  m’ Y” Zm)  is m ’  m 

fixed in a rigid body that is free to turn about 0, and the tr iad (X ,  Y ,  Z )  

s e rves  as a frame of reference.  Assuming that the ( X  

initially coincides with the reference triad,  it can be revolved io the orienta- 

tion shows in Figure 3 by the three following right-hand rotations. 

Z ) tr iad m’ ym’ m 

1. First rotate about Y through cp . This brings the movable t r iad 
P 

Y Z ) into coincidence with (XI, Y, Z’) . !xm, m ’  m 

2. Next, rotate about Z ’  through cp . This brings (Xm, Ym, Zm) 
Y 

into coincidence with ( X  Y ’ ,  Z’) . my 

3. Finally, rotate about X through cp . This  br ings m r 

into the final position. 
(X” Ym’ ’m) 

7 



FIG. 3. EULERIAN ANGLES 
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Note that all possible positions of the body can be obtained by assigning 

and cp in the ranges 0 5 cp < 27r , 0 9 cp 5 IT, and 
P ’  cpY’ r P Y 

values to cp 

0 5  cp 5 2 l r .  r 

The symbols used in the discussion of Eulerian angles were chosen to 

tr iad is coincide with those used in  Figures i and 2. That is, the (X,  Y, Z )  

the one established by the vehicle inertial  platform and the ( X  ” Ym’ Zm) 

t r iad corresponds to the vehicle-fixed t r iad in Figure I. An inspection of 

are precisely the Figure 2 reveals that the Eulerian angles cp 

angles measured by the inertial  platform resolvers .  

p 1  ‘y’ ‘pr 

Attitude control is achieved during the S-IC sL?ge of powered flight by 

gimbaling o r  deflecting the stage’s four outboard engines (engines I through 4 

in Figure i) . Each of these four engines has  two hydraulic actuators for 

gimbaling the engine about its stage attach point. To  determine the amount 

these engines are to be gimbaled, the LVDC compares the instantaneous 

vehicle attitude with the attitude computed by the guidance scheme. 

e r r o r  signals ( $  $ , $ r )  are derived from the difference between the 

platform gimbal angles ( c p  

Attitude 

P’ Y 

, cp ) and the desired attitude angles 
P Y  cpY 

and Z m’ ym’ m ( $  , xy , xr) . The vehicle angular velocities about the X 

axes are measured by three rate gyroscopes located in the IU.  In the flight 

control computer, the signals f rom the rate gyroscopes ( $  , $ y ,  $r) and 

the attitude e r r o r  signals are filtered, multiplied by a gain factor, and then 

P 

combined to  generate the control commands for the engine actuators.  The 

attitude e r r o r  equations and the control laws fo r  combining the filtered attitude 

e r r o r s  and vehicle angular rates are presented in Chapter IV. 
9 
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During the S-IC stage of flight, the vehicle must  execute pitch, yaw, 

and rol l  maneuvers.  A yaw maneuver during the first critical seconds of 

flight guides the vehicle away from the launch umbilical tower. The Zm axis 

is aligned along the flight azimuth by the rol l  maneuver. The pitch maneuver 

is designed to guide the vehicle along a flight path that resul ts  in minimum 

aerodynamic s t ructural  loading. 

component of velocity tangent t o  the ea r th ' s  surface as it gains altitude. All 

three maneuvers are preprogrammed in the LVDC as time-dependent poly- 

nomials. 

This  maneuver allows the vehicle t o  build a 

The LVDC contains a closed-loop guidance scheme fo r  providing 

guidance commands during the S-I1 and S-IVB stages of powered flight. This  

scheme determines attitude commands from the components of position and 

velocity of the vehicle center of gravity (CG) relative to a space-fixed coordi- 

nate system orientated as  the (X,  Y, Z)  platform coordinate system. Initial 

velocity of the vehicle because of the ear th 's  rotation and the platform velocity 

from the integrating accelerometers  are algebraically summed by the LVDC 

to  obtain space-fixed velocity of the vehicle. 

integrating the space-fixed vehicle velocity. 

Position is determined by 

With the description of the major  vehicle subsystems complete, a 

presentation of the models of the ea r th ' s  shape, motion, gravity field, and 

atmosphere can now be given. The standard model for the ea r th ' s  shape is 

known a s  the Fischer  Ellipsoid, a model which considers the ea r th  to be an 

elliptical spheroid (F igu re  4) . The intersection of the ear th  and a plane that 

10 



P O L A R  A X I S  

I / V 

\ \  / 
EQUATORIAL 

a 

b 

w e  

E Q U A T O R I A L  R A D I U S  OF E A R T H  

P O L A R  R A D I U S  OF E A R T H  

M A G N I T U D E  OF E A R T H ’ S  R O T A T I O N A L  
V E L O C I T Y  

FIG. 4 .  THE FISCHER ELLIPSOID 



contains the ear th 's  polar axis is an  ell ipse;  the intersection of the ear th  and 

a plane that is perpendicular to  the polar axis is a circle. 

The only motion of the ea r th  that will be considered is rotational; that 

is: the center of the ear th  will be assumed fixed in space with the ear th  

rotating about its polar axis. Translation of the ear th  about the sun and 

precession of t b  ear th ' s  polar axis during the year  have no significant effect 

on the motion of a space vehicle with respect  to the ear th .  

A Newtonian potential function is used to  predict  the magnitude and 

direction of the ear th ' s  gravity at any point above the ear th ' s  surface.  The 

oblate potential of the ear th  is assumed to  contain the second, third, and 

fourth spherical  harmonics.  A discussion of this  potential is lengthy and will 

not be presented here .  A complete t reatment  of the subject is given in Chapters 

I and I1 of Reference 1. 

A model reference atmosphere for  Cape Kennedy, Florida (Reference 

2 ) ,  which provides atmospheric information, is based on annual median values 

of measured atmospheric parameters .  

atmospheric parameter  as a function of altitude. 

Multisegment polynomials define each 

12 
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CHAPTER I1 

REFERENCE COORDINATE SYSTEMS AND TRANSFORMATIONS 

In o rde r  to determine the motion of a vehicle with respect  to the 

rotating ear th ,  six reference three-dimensional coordinate systems are used. 

Each system is defined to be right-handed and orthogonal to simplify computa- 

tion. Rotational motion of a vehicle is computed in the vehicle coordinate 

system ( X  

of two earth-fixed and three space-fixed systems.  Here,  the t e r m s  "space- 

Z ) defined in Figure 2 .  The other five systems consist my ym7 m 

fixed" and "earth-fixed" refer to coordinate systems that have constant orien- 

tation and position with respect  to the solar  system and the ear th ,  respectively. 

The three space-fixed systems (F igu re  5) are r e fe r r ed  to as the surface triad 

(Xs, Ys, Z s ) ,  the earth-centered triad ( X  c ,  Yc, Z c ) ,  and the equatorial 

tr iad ( U ,  V, W) . The two earth-fixed systems (F igu re  6) are r e fe r r ed  to 

Z ) and the earth-equatorial t r iad e' ye' e as the launch-point t r iad ( X  

We' ve, We) 

A t  the instant the vehicle inertial  platform i s  released, the origin of 

the (XS,  ys, Z ) 

surface of the ear th  moves beneath the ( X  

tr iad is located at the launch point. A s  time passes ,  the 

origin because of the Ys, Z ) 
S' S 

13 
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NORTH POLE 

FIRING DIRECTION 

EQUATOR1 AL 

L A U N C H  AZIMUTH A 2  

GEOCENTRIC L A T I T U D E  OF L A U N C H  
POINT 

$0 
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FIG. 5.  SPACE- FIXED COORDINATE SYSTEMS 
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A Z  

w e  

$0 

' P O  

L A U N C H  A Z I M U T H  

M A G N I T U D E  OF E A R T H ' S  R O T A T I O N A L  
V E  L O C l T Y  

G E O C E N T R I C  L A T I T U D E  OF L A U N C H  
P O I N T  

G E O D E T I C  L A T I T U D E  OF L A U N C H  P O I N T  

FIG. 6. EARTH- F IXED COORDINATE SYSTEMS 
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ear th’s  rotation. This  system is defined to have the same orientation as the 

(X,  Y,  Z )  

At re lease,  the inertial  platform X axis is aligned to the local vertical;  the 

Z axis is tangent to the ear th’s  surface at the launch s i te  and lies in the flight 

plane; and the Y axis forms  a right-hand sys tem.  The (Xs, Ys, Z s )  tr iad 

i s  defined in this manner to simulate the function of the vehicle inertial  

platform. 

space-fixed triad established by the inertial  platform (Figure 2) . 

Z ) has the same orientation a s  

the surface t r iad;  its origin i s  located a t  the center of the ear th  a s  the name 

implies 

computed with respect  to this system. 

yc’ c The earth-centered triad (Xc, 

Some of the initial conditions and certain trajectory parameters  a r e  

A second earth-centered triad ( U ,  V,  W) , the equatorial system, is 

defined to simplify computations that involve the ear th’s  rotational velocity. 

The U axis,  which is directed along the earth’s rotational velocity vector,  

passes  through the North Pole and is perpendicular to the equatorial plane. 

A t  the instant the vehicle inertial  platform is released, the W axis lies in the 

plane of the launch meridian. 

Z ) i s  used by the model for comput- e’ *e’ e 

triad has its origin a t  the launch site and is coincident with the ( X  s ,  YS’ Z S )  

One earth-fixed triad ( X  

ing motion of the vehicle with respect to the launch point (Figure 6) . This 

triad a t  the instant the vehicle platform is released. 

A second earth-fixed triad ( U e ,  Ve, W ) has i t s  origin a t  the center e 

of the ear th  and is coincident with the ( U ,  V,  W) t r iad a t  platform release.  

16 



This  system is used in  deriving the transformation from the (X s Y  Ys’ ZS) 

Z ) system. e’ ye’ e sys tem to the ( X  

Since the objective of the total model is to determine the position and 

orientation of a vehicle at any time in flight in  different coordinate systems,  

a procedure for  transforming the coordinates of a vector f rom one t r iad to  

another is mandatory. This  procedure can be established by developing a 

trarisformation between each pair  of t r iads .  A transformation is determined 

by the right-hand rotations required to  c a r r y  the first t r iad to the same 

orientation as the second t r iad.  Right-hand rotations are represented by 

3 x 3 matrices. 

Three  basic right-hand rotations occur frequently throughout this paper.  

The transformations for  these rotations follow: 

cos  0 s in  0 

Here,  

through an  angle 0 ; [ 0 ] is the transformation for  a right-hand rotation 

about the Y axis through an  angle e ; and [ 0 ]  

[ e l x  is the transformation for  a right-hand rotation about the X axis 

is the transformation for a 

17 



right-hand rotation about the Z axis through a n  angle 0 . An inspection of 

Figure 7 makes a derivation of these transformations tr ivial .  A l l  three 

T T 
transformation are orthogonal since [ 01. [ 0 3 = [ 0 ] [ e ]  = [I] , fo r  

1 

i = x ,  y, z where [I]  is the identity matrix. Hence, the transpose equals 

the inverse.  This  fact M T i l l  be used extensively throughout this paper.  All 

of the transformations required by the model will be combinations of these 

three basic ones. 

Two rotations are required to  align the surface tr iad with the equatorial 

tr iad.  A right-hand rotation about the X axis through the angle A will 

c a r r y  the Z axis  into the launch meridian plane (F igu re  5) . Then a negative 

S z 

S 

right-hand rotation about the new Y axis through the angle ($ - q.) will 
S 

complete the alignment. Hence, 

and 

Since the surface tr iad and the earth-centered triad have the same  orientation, 

the above transformation will apply there  also.  This is 

. -  
U 

V 

W . -  
= [v0 - :Iy [..I X 

X 
C 

YC 

Z 
. c -  

= bo - 4,[.3 X % 

18 ( 2 - 3 )  



x = x '  

/ I  Y =  Y '  

[ 4 = [81x [ 4 
I 

Y '  

z = z '  
k 

y ' ,  z ' )  

FIG. 7. TRANSFORMATIONS FOR RIGHT-HAND ROTATIONS 
19 



and 

T - 
x C = [qo - :] T 

X Y 
(2-4) 

An inspection of Figure 6 shows that the ( X  , Z ) t r iad can be 
e *e' e 

W ) t r iad  by these same two rotations. This  
'e' e aligned with the (Ue, 

means that 

- 
e = [i] = [q0 - :Iy p z ]  X 

and 

- T 

e = pzIT[c0  X - +] Y Ti e 

Only one rotation is required to align the 

( Ue , Ve , W ) t r iad ( Figure 8) . Thus, e 

and 

- T -  
u = Fet] X u e 

( U ,  V, W) tr iad with the 

The necessary transformations a r e  now available to develop a t rans-  

formation from the surface t r iad to the launch-point t r iad.  

(2-1) , (2-6) ,  and (2-7) , 

From equations 

20 



u = u, 
L A U N C H  P O I N T  b 
AT T I M E  t 

L A U N C H  P O I N T  
AT P L A T F O R M  
R E L E A S E  

EQUATOR I A L P L A N  E 

L A U N C H  P O I N T  b 
AT T I M E  t 

L A U N C H  P O I N T  
AT P L A T F O R M  
R E L E A S E  

EQUATOR I A L P L A N  E 

w e  M A G N I T U D E  OF E A R T H ' S  R O T A T I O N A L  
V E L O C I T Y  

t T I M E  F R O M  V E H I C L E  P L A T F O R M  
R E L E A S E  

FIG. 8 .  ROTATION OF THE EARTH 
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I 

- 
e 

= [Az],' b o  2 X 

o r  

where 

The symbol TSE was chosen as an abbreviation for transformation from the 

space-fixed surface tr iad to  the earth-fixed launch-point tr iad.  Since [ TSEj 

is a product of orthogonal matr ices ,  [TSE] is orthogonal. Therefore,  

- 
x = [ T S E I I  Ze . 

S 
(2-10) 

Selection of the surface tr iad to simulate the inertial  platform system 

requires  that a transformation be established from this tr iad to the vehicle 

system. In addition, this transforination must  be a function of the simulated 

platform gimbal readings. The three right-hand rotations required to revolve 

the inertial  platform triad to the same  orientation as the vehicle tr iad were 

given in the discussion of Eulerian angles in Chapter I. Hence, the transfor- 

mation in question is a product of the transformations of those three right-hand 

rotations. That is, 

X 

xm = [;;I 
22 



where 

[TSM1 = [‘pr]xpY]z P P I  Y 

Since the 

tr iad,  . 

(Xs, Ys, Z ) t r iad has the same  orientation as the (X ,  Y,  Z )  
S 

- x = [TSM] Fs 
m 

and 

- x = [TSMlTTm 
S 

This is the las t  transformation required by the total model. 

(2-1 1) 

(2 -12)  
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CHAPTER III 

EQUATIONS O F  MOTION 

The purpose of the total mathematical model is to determine the 

relative motion of a Saturn vehicle during the first stage of powered flight. 

The model is required to predict the vehicle's translational motion with respect 

to the launch point, the space-fixed position and velocity which the launch 

vehicle digital computer would compute, and the three Eulerian angles which 

the vehicle's inertial platform would measure. To accomplish the first two 

objectives, all translational motion of the vehicle is first referred to the space- 

fixed surface triad. 

triad is determined with respect to the surface triad, Earth-fixed motion of 

the vehicle is then obtained by algebraically combining the space-fixed trans- 

lational motion of the launch-point triad with the space -fixed translation 

motion of the vehicle. To predict the three Eulerian angles, the angular 

motion of the vehicle is first computed with respect to  the vehicle-fixed triad. 

This motion is transformed to Eulerian angular motion and integrated to 

obtain Eulerian angles. 

Next, translational motion of the earth-fixed launch point 

Since most of the equations of motion involve vectorial quantities such 

as position, velocity, and acceleration, vectorial notation is used extensively 

24 



in this chapter. A subscript  is attached t o  each vector to indicate the t r iad 

to which the vector components refer. The subscripts s, c ,  u, ue, e ,  and m 

are used to  refer to  the surface,  earth-centered, equatorial, earth-equatorial, 

launch-point and vehicle t r iads ,  respectively. 

earth-centered triad have the same orientation, a vector r e fe r r ed  to  either 

tr iad has  the same components. 

Since the surface tr iad and the 

The equations that describe the translational motion of the launch-point 

tr iad with respect  to the surface tr iad will be derived f i rs t .  

the relative position of the two t r iads  for  a rb i t r a ry  t ( the t ime from inertial  

platform release)  Notice that 

Figure 9 shows 

since the launch point remains on the Fischer  Ellipsoid a t  a fixed geocentric 

latitude + . The following three equations are obtained from an inspection 

of Figure 9: 

0 

- - - 
R P  = R ( t ) s  - R(t=O) 

S S 
(3-2)  

( 3 - 3 )  

25 
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I N T E R S E C T I O N  O F  F I S H E R  
E L L I P S O I D  AND P L A N E  
CONTAINING T H E  L A U N C H  
P O I N T  M E R I D I A N  AT 
I N E  R T  I A L  P L A T  FORM 

L A U N C H  P O I N T  
\ 

’ I  

R E L E A S E  
“2 

- + -  Y T2 
a 2  b 2  

= I  
N 

t X  

N 

a - E Q U A T O R I A L  R A D I U S  
OF E A R T H  x ‘  = R($to)  cos $to 

N 

b - P O L A R  R A D I U S  OF E A R T H  Y’ = R(Jlo) s i n  Jlo 

FIG. 9. RELATIVE POSITION 
OF SURFACE TRIAD AND LAUNCH POINT TRIAD 
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By equations (2-2) ,  (2-8),  and (3-3) 

(3-4) 

Then, substituting equation (3-4) into equation (3-2) yields 

s in  $ 

cos $ sin(w t) 

0 

0 e 

e -cos $o cos( w t 

T 

= [..I' X p o  - "1 2 Y 

ue I '  ( 3 - 5 )  

0 

R ( +  ) cos + sin(w t )  

R(Qo) C O S  $ (1 - C O S  w t )  

0 0 e 

0 e 
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Since the product is constant with respect  to t ime, 
X 

m 

Equations ( 3 - 5 )  and (3-6) above descr ibe the translational motion of the 

launch-point t r iad with respec t  to the surface t r iad,  as required.  

The first law of motion of Newtonian mechanics is used to  describe the 

translational motion of the vehicle center  of gravity. This law states that a 

particle of mass m , subject to a force F , moves relative to a basic f rame 

of reference in accordance with the equation 

- 
F = k m z  , (3-7)  

where is the acceleration of the particle and k is the universal  positive 

constant that depends on the choice of units of force,  mass, length, and t ime. 

In the model being described, i t  is assumed that a system of units is used fo r  

which k = i . The f r ame  of reference to  which motion of the vehicle CG is 

refer red  is the space-fixed surface t r iad.  

Notice that neither m nor  F is constant i n  the model. Mass  is a 

function of the rate at which the vehicle 's  engines consume the s tored propel- 

lant. F depends on the magnitude and direction of the engines' thrust ,  local 
- 

atmospheric conditions, velocity of the vehicle with respect  to the a i r ,  and 

28 



attitude of the vehicle. 

Chapter IV. 

The forces  that a c t  upon the vehicle are described in 

Equation (3-7) gives, on resolution into components along the surface 

t r iad axes,  

S 
d2 X 

m 7  = F  X 

where F F , and F are the components of force along the axes. 

These three equations are each solved for acceleration and integrated to  obtain 

velocity. That is, for a rb i t r a ry  t 

xs ' y s  zs 

xs 
t F  + s  y dt 1 

S 
d X  

dt  t = O  0 

t F  + s  -y ys dt  , 
t-0 0 

dt  

and 

dt . 2s 
t F  

t=O 0 
dt  

(3-8) 

(3-9) 

(3-10) 

Position of the vehicle at a rb i t r a ry  t is determined by integrating 

- equations (3-8) (3-9) and (3-10) . 

t = O  P 
( 3-1 1) 
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P 

t d Z  
ZS = (ZSJ + i ( - ) d t  

t = O  P 

(3-12) 

(3-13) 

The symbol used fo r  this position vector is 

- 
RS = 

S 

F o r  a length of t ime A a f t e r  the inertial  platform is released, a 

Saturn vehicle does not move from its launch pad. F o r  this reason, a second 

time reference,  T = t - A , is defined. If T 5 0 , the vehicle CG has  a 

constant velocity because of the earth’s rotation. Figure 10 shows the relative 

position of the vehicle for  0 5 t 5 A . During this t ime, 

R S ~  = RP S + L T S E J ~  REO e 

and 

where 

T 
2-1 

Y 2 J  [:I U 

(3-14) 

(3-15) 

(3-16) 
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FIG. IO. R E L A T I V E  POSITION 

OF A VEHICLE B E F O R E  LAUNCH 
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and 

- T-  
RC = R ( t ) s  + [TSE] REO 
- 

e S 
(3-17) 

Equations (3-14) and (3-15) are not valid for  T > 0 . Figure 11 shows 

the relative position of the CG after f i r s t  motion. At this t ime, 

~ - 
RE = [TSE] (E - RPs) e S 

and 

T- 
RS = RPs + [TSE] RE 
- - 

e S 

(3-18) 

( 3-1 9) 

By differentiating equation (3-19) , an expression is obtained that contains the 

velocity of the C G  with respect  to the launch point tr iad.  

z ( R S s )  d -  = - (RP  d -  ) + ($ - [TSElT)=  + [TSEIT 
dt  s e 

d - -  This  equation can be solved for  -( RE ) by transposing t e r m s  and multi- 
dt  e 

plying each one by [TSE] . 

- d -  d -  - R E  dt e = [TSE] z ( R S s  - RPs) - [TSE] 

- 
= [ T S E J ( s s  - RPs) - [TSE] 

( 3 - 2 0 )  

Al l  the t e r m s  in equation (3-20) have been previously defined except 

x [ T S E ]  
d T . An expression for  this t e r m  will now be derived. 
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FIG: 11. R E L A T I V E  POSITION 
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Ys , Z axes and 
S ’  S 

Define I J , K to be unit vectors  along the X 
s ’  s s 

K to  be unit vectors  along the X Ye,  Z axes. By equation Ie 1 Je > e e ’  e 

(2-IO),  these two unit t r iads  are related by the equation 

IS 

S 
J 

S 
I -  K 

T 
= [TSE] 

e K 

(3-21) 

K are nonzero since e ’  Je’ e Notice that the derivatives of the unit vectors  I 

their  directions continuously change because of the ear th’s  rotational velocity. 

Hence, 

e dt 

K where e ’  Je ’  e for  :=I 

m W e 
0 

0 

w e l  

e2  

e3 

W 

W 

( 3 - 2 2 )  

( 3 - 2 3 )  

By defining [ TSE] = [ A . . ]  where i, j = i , 2 , 3 ,  equation (3-21) can be 

rewrit ten in component form as 

13 

Ks A131e + A23Je  + A33Ke 
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An application of equation (3-22) and the fact that the unit vectors  Is ,  Js , and 

K 

the elements of [TSE] . 

do not vary with time yield expressions that contain the derivatives of all 
S 

(3-24) 

- 
- -  JS - o = A121 + A Z 2 ~  + k 3 2 ~  +(=,)ex ( A ~ ~ I ~  + A , , J ~  + A ~ ~ K ~ )  , 

dt  e e e 

(3-25) 

and 

where 

By carrying out the indicated c r o s s  product and collecting t e r m s ,  equation 

(3-24) becomes 

and K are linearly independent since they are mutually e ’  J e ,  e The vectors  I 

orthogonal. Hence, 
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An application of the above procedure to  equations (3-25) and (3-26) yields 

expressions for A . .  where i = i , 2 , 3  and j = 2 , 3  . These expressions are: 
1J 

Using the above equations, we can now expres s  the t ime derivative of 

[TSE] as 

d 
dt  
- [TSE] = 

36 



where 

[ + I  = 

Therefore,  

0 

-W 
e3 

e2  W 

W 
e3 

0 

-W e i  

e l  

0 

By substituting equation (3-29) into equation (3-ZO) , -(REe) d = RE can be 

be expressed as 
d t  e 

- 
= [TSE] ( zs - GS) - (we)  x REe 

e 
(3-30) 
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Equations (3-18) and ( 3-30) describe the relative translational motion of the 

vehicle CG with respect  to the launch-point t r i ad  as required.  

Total motion of a vehicle is described by the model in t e r m s  of the 

translational motion of its CG and rotational motion of the vehicle about its 

CG. The equations that describe the second type of motion are all that remain 

to be derived. 

The model assumes a vehicle to be a rigid body constrained to  rotate 

about its CG. Thus, the angular momentum about the CG is 

- 
L = I w i + I w j + I w k  , x x  Y Y  z z  (3-31) 

Z axes,  respectively; 
m ’ Y m ’  m where i ,  j ,  k are unit vectors along the X 

I I are the principal moments of inertia about these axes;  and 
IX’ y ’  z 

w w , w are the components of angular velocity w of the vehicle about 

these axes. Here, w is the angular velocity of the vehicle tr iad with respect  

to the surface tr iad.  

books on Newtonian mechanics. 

x ’  y z 
- 

Equation (3-31) is classical  and can be found in mos t  

The total moment of the external forces  about the CG is 

di 
+(I w + I  b ) k + I  w - z z  z z  x x dt  

d’ dk 
Y Y dt z z dt  

+ I w  J + I w  - ( 3 - 3 2 )  
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where 

dw 

77 dt 
77 w = -  

for  77 = x , y ,  z 

Since the time rate of change of the principal moments of inertia is very 

small ,  it is assumed that I = 0 for  = x,y, z . Each of the unit vectors 

i ,  j ,  k changes only in direction so that 

77 

d f  - - = W  x 7 j  for f = i , j , k  d t  m 

Thus, equation ( 3 - 3 2 )  can now be simplified to 

- 
M = I  & i + I  & j + I  b k + w  x ( I o  i + I  w j + I  w k)  z z  e x x  Y Y  2 2  x x  Y Y  

+ [I & z z  Y 
- w x w y ( I x - I  )] k 

This  equation can be rewritten in component form as  

MI = I b - w w ( I  - I z )  
x x  Y Z Y  

- x z z  (I - I Y )  M , = I  b 
Y Y  

M3 = I & - w w ( I  - Iy)  
z z  X Y X  

39 
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where Mi, Mz, M3 are the components of E along i, j ,k . Therefore, 

(3-33) 

- 
An expression for the total moment vector, M , about the vehicle CG is given 

in Chapter IV. Angular velocity of a vehicle about its CG is determined at 

arbitrary t by integrating equation (3-33) to obtain 

t 

0 

- 
w = (zm) + ~ m d t  

k 0  
m (3-34) 

where 

(zm) = [TSM]' (Ze) 
t=O 8 

Equations (3-33) and (3-34) describe the rotational motion of a vehicle about 

its CG a s  required. 

Since the orientation of a Saturn vehicle is defined by three Eulerian 

angles, some method of computing these angles must be established. One of 

the simplest methods is to transform the vehicle angular velocity to Eulerian 

angular velocity and integrate the Eulerian angular velocity to obtain Eulerian 

angles. To this end, a transformation from the vehicle angular velocity to 

Eulerian angular velocity will now be derived. 

The required transformation will be derived from infinitesimal rota- 

tions of a vehicle about its CG. Suppose that a rigid vehicle has turned through 
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an infinitesimal angle about an axis through its CG. This  infinitesimal rota- 

tion may be represented by an infinitesimal vector 6; (Figure 1 2 ) .  6: 

determines the displacements of all points of the vehicle. 

Let f be the position vector relative to the CG of a point A before 

the displacement and F + 6F the position vector after displacement. In the 

rotation 6: the point A moves perpendicular to the plane containing the 

vectors ? and 6; , in the same direction as  the vector product 6 ;  x r . 
The magnitude of 6F is I S y i  AB = 1 s t  I IF1 sin0 (Figure 12) .  Hence, 

a; = 6 i j  x r ( 3 - 3 5 )  

Infinitesimal rotations about a point can be added vectorially. Let 6 77 

and 6m 

through the vehicle CG. Then the position vector of a point A in the vehicle 

is F before displacement, 7 + 6 :  x F after the 6 7  rotation, and 

7 + 6 q  x F + 6m x ( ?  + 6 f x F) after the 6% rotation. By neglecting 

infinitesimals of the second o rde r ,  the resultant displacement of point A is 

be two infinitesimal rotations applied in succession about axes  

- 
6 i j  x F + 6 E x  r = ( 6 :  + 67%) x F a ( 3 - 3 6 )  

Thus, an infinitesimal rotation of a vehicle about its CG may be described 

either as an infinitesimal rotation 6 ;  o r  by means of infinitesimal increments 

in  the Eulerian angles. The rotation of a vehicle f rom the orientation 

cp ) to a second orientation ( c p  + A cp cpy + Acpy9 cpr + Acpr) ( c p p ’  cpy’  P P )  

may be accomplished by applying the following finite rotations in order :  
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FIG. 12. I N  F l  N l T E  SI MA L ROTATION 
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Acpri, A cp K' , Acp J where i ,  K' , and J are unit vectors along the 

Z '  , and Y axes, respectively. (See Figure 3 of Chapter I. ) If the xm 2 

increments in the Eulerian angles are infinitesimal, the o rde r  of these rota- 

tions is immaterial ,  so  that 

Y P 

6 :  = Acp i + Acp J + Acp K' . (3-37)  
r P Y 

The infinitesimal rotation of concern he re  is the rotation Iw I d t  in  the 

direction of the unit vector W / IW I where W is the angular velocity vector 

of the vehicle. Corresponding to this rotation, ( IW I dt) (w / IW I ) = w dt , 

are the three infinitesimal increments to the Eulerian angles, d q r i ,  d q p J ,  

d q  K' . Thus, equation (3-37)  becomes 
Y 

- 

- 
w d t  = d q  i + d q  J + d q  K' 

r P Y 

By dividing each t e r m  of equation (3-38)  by dt  , the expression 

- 
w = $ i + $ J + @ K '  

r P Y 

(3-38)  

(3-39)  

for  m = r ,  p, y . It is now convenient to d q m  - -  
'm - dt  

is obtained where * 

convert equation (3-39)  to an expression involving unit vectors  along the 

X ,  Y ,  and Z axes of Figure 3.  Define j ,  k ,  1 ' ,  J ' ,  I ,  and K to be unit 

vectors  along the Y Z X' , Y' , X ,  and Z axes, respectively. Then, 

by an inspection of Figure 3, we see 

m '  m '  
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[I] = PPIy[:] 
and 

['I = PYI z [:I K'  
. 

K'  

From these two equations, it is easy to show that 

i = cos cp COS cp I + s in  cp J - cos cp sin cp K 
Y P Y Y P 

and 

K' = s in  cp I + COS cp K 
P P 

(3-40) 

(3-41) 

(3-42) 

(3-43) 

Then, by substituting equations (3-42) and ( 3-43) into equation (3-39) and 

simplifying, we obtain 

- 
sin cp ) I  + ( G  sin cp + G p ) J  P r Y w = (Gr cos cpy cos cp + 'py 

S P 

+ ( G  COS cpp - Gr COS cp s in  cp ) K  . 
Y Y P 

(3-44) 

A resolution of W 

equation (2-11) : 

in the vehicle system can now be obtained by using 
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P + +Y sin cp 
+, cos cp cos (0 

Y 
- w = [TSM] Grs incp  + G P  

Y 
cos  cp - 4, cos cpy sin cp 

P 

m 

$) s in  cp y +  ‘pr 

= [GY sin cpr + GP cos cp r cos cpy]  

cos cp - (b sin cp cos cp 
cpY r P  r Y 

sin cp 0 1 
P 

sin cp r 0 j 
Y 

-sin cp C O S  cp COS cp 0 
r Y r 

where 

(3-45)  

sin cp 0 
P 

[TEM] = r 

r r 

Here,  the symbol TEM was chosen to stand for the transformation from 

Eulerian angular r a t e s  to vehicle angular rates. 

be computed by multiplying the transpose of the mat r ix  of cofactors of 

The inverse of [TEM] can 

ITEM] 
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by the scalar I /  I [TEM] 

of [TEM] . Thus, 

A 

, where 

r o  

[TEM] I is the value of the determinant 

T 
0 cos cp 

Y 
s in  cp COS cp -sin cp cos cp 

cos cp cos cp sin cp sin cp 

r Y Y r 

r Y Y r -  

-sin cp sec cp r 0 COS cp sec cp 
r Y 

s in  cp r 

-tan cp cos cp 

cos cp r 1 . (3-46) 

tan cp s in  cp r Y r . Y  

Therefore,  [TEMI-' exists when cp # *90 degrees,  so  that 
Y 

= [TEMI-' ri] = [TEM]- 'w  m 

w 'pr 

(3-47) 

Since the yaw gimbal of a Saturn inertial  platform is physically res t r ic ted to 

rotations of 145 degrees  f rom i t s  initial position, the above restrictions on 

create no problem. 
(pY 

Equation (3-47) is the required transformation for converting the 

vehicle angular velocity to Eulerian angular velocity. The Eulerian angles 

, cpy and cpr are computed at a rb i t r a ry  t as  follows: 
(pP 

t 

0 
(3-48) 

46 



for q = p,  y, r . This is the las t  equation required to describe the rotational 

motion of a rigid vehicle about its CG. 
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CHAPTER IV 

FORCE AND MOMENT EQUATIONS 

A Saturn vehicle experiences forces  f rom three basic sources  during 

its first stage of powered flight. These sources  are the vehicle's f irst-stage 

engines and the ea r th ' s  gravitational potential and atmosphere.  This chapter 

provides the equations required to compute the total force and moment vectors  

that resul t  f rom these forces .  

The S-IC stage of a Saturn V vehicle has  five engines (F igu re  1) that 

propel the vehicle through the ear th 's  atmosphere.  The four outboard engines 

are attached to the base of the stage by mechanical joints that permit the 

engines to gimbal o r  rotate through a limited angle f rom their null position. 

Gimbaling of these four engines according to commands from the flight control 

computer forces  the vehicle t o  follow the desired attitude commands. Each 

outboard engine has  two hydraulic actuators,  attached 90 degrees  apar t ,  that  

execute the flight control computer commands. 

attitude control in the pitch plane, and the other actuator provides attitude 

control in the yaw plane. Attitude control is achieved in the roll  plane by 

moving both the pitch and yaw actuators in the proper directions. 

One actuator provides 
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In Chapter I, the word "control" was defined, and the control system 

was briefly described. A more  detailed description of this system will accrue 

as the model f o r  it is presented. 

A block diagram of the control system for  a Saturn vehicle is shown in 

Figure 13. 

form gimbal angles and the commanded attitude angles. The vehicle angular 

velocities about the X 

gyroscopes. 

and the attitude e r r o r  signals are electrically filtered, multiplied by a gain 

factor,  and then combined to generate the commands to the four outboard 

engine actuators.  

Attitude e r r o r  signals are computed in the LVDC from the plat- 

and Z axes are measured by three r a t e  m '  y m '  m 

In the flight control computer, signals from the rate gyroscopes 

and x a r e  defined to be the 
x P >  5, r The commanded attitude angles 

three Eulerian angles through which the inertial  platform tr iad must be 

rotated to align it with the desired orientation of the vehicle. 

k 

If i jc  , and 
C '  

are unit vectors along the vehicle Xm , Ym , and Z 
C m 

axes,  respectively, 

when the vehicle has  the orientation ( x  p ,  x y >  xr) 7 then 

and Is, Js,  and K are unit vectors 
S 

where [TSC] = 

and Z axes respectively. s '  y s '  S 
along the surface tr iad X 
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, and + are defined to be the P ’  +Y r Similarly, the attitude e r r o r  signals 

three Eulerian angles through which the vehicle tr iad 

be rotated to  align it with the ( i  j c ,  k ) tr iad.  Therefore,  

( X  m ’ Y m ’  Z m ) must 

C Y  C 

where i ,  j ,  and k a r e  unit vectors  along the vehicle X Y and Z 

axes respectively. 

transformation from the ( X  

m ’  m ’  m 

By equations (2-12) and (4-1) , a second expression for the 

Z ) tr iad to the ( i c ,  j c ,  k ) tr iad i s  m ” m ’  m C 

obtained. 
- -  

(4-3) 

Hence, by equations (4-2) and ( 4 - 3 ) ,  

m 

The following expressions for + , $y, and qr can be obtained from 
P 

equation ( 4-4) by performing the indicated product and equating corresponding 

elements of the two matr ices .  

- x )  sin(  ‘pr + ‘r ) 
Y + (‘py ( 4-5) 
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'r + 'r Cp + x y  
- ( c p  P P  - x )  cos ( y 2  ) s i n (  ) 

(4-7) 

The details involved in deriving the above expressions and the approximations 

on which they are. based are given in Reference 3 .  These are the expressions 

used by the LVDC for  computing the attitude e r r o r s .  

The attitude e r r o r s  are converted to analogue signals by the LVDA 

before they reach the flight control computer. Here,  both the attitude e r r o r  

signals and the angular velocity signals f rom the rate gyroscopes are passed 

through electr ical  networks called filters. 

remove the effects of flexible body motion from the input signals and to  main- 

tain proper control system stability. 

and 6, , GY , ir are used to denote the filtered attitude e r r o r  and angular 

velocity signals,  respectively. 

These networks are designed to 

- 
In this  paper the symbols $ , 7 , Tr 

P Y  

A special  digital filtering technique (Reference 4) has been developed 

to simulate the electrical control f i l ters .  

in this paper since it is widely used and a discussion of it is lengthy. 

This technique will not be discussed 

The filtered attitude e r r o r  and angular velocity signals are combined 

in the flight control computer by the following control laws to give the 

commanded thrust  deflections in the pitch, yaw, and roll  planes. 
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Pitch: 

Yaw: 

Roll: 
- 

P r c  = A O r  + r + A l r T r  

(4-8) 

(4-9) 

(4-10) 

H e r e ,  A and A for ,q = p,  y, r are gain factors that provide stability to 

the control system. The magnitudes of these factors  a r e  specified as  step 

functions of flight t ime.  

077 irl 

Individual commands to the actuators of the four control engines are 

defined by the following equations: 

p,, - -  - p p c  - P r c / f i  

- P r c / f i  
PP2 P C  

5 3 3  - - p p c  + Prc/dT 

p p 4  - - p p c  + P r c / 6  

P y i  - - p y c  + P r c / f i  

- - - p r c / n  

- - - P r c / f i  

- - + P r c / f i  9 

Y2 YC 

Y 3  YC 

Y4 YC 

(4-11) 

(4-12) 

(4-13) 

(4-14) 

(4-15) 

(4-16) 

(4-17) 

(4-18) 
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where p and p are the commands to the pitch and yaw actuators of the 

i outboard engine. 

P i  Y i  
th 

The positive signs for  a l l  the control pa rame te r s  are shown by Figure 

I. A positive attitude e r r o r  about a vehicle axis requires  a negative right- 

hand rotation about that axis to co r rec t  for  it. A positive angular velocity 

about a vehicle axis has  the same  sense as  a positive right-hand rotation about 

that axis. The bases  of the four outboard engines are moved parallel  to the 

+Zm axis by a +p 

Similarly, a +p moves the base of the engines parallel  to the negative Y Y m 

axis,  creating a negative moment about the yaw 01: Z axis. Thus, positive 

actuator movements co r rec t  for positive attitude e r r o r s .  

creat ing a negative moment about the pitch o r  Y axis. P m 

m 

The thrust  vector of each of the five S-IC stage engines is ideally 

parallel t o  the Xm axis  when the engine is in the null position. However, an 

engine's thrust  vector alignment may deviate because of e lectr ical  and 

mechanical tolerances.  

the null position of each engine is assumed to be offset by the two small  angles 

and A p  have the same A p p i a n d A p y i ,  f o r  i = 1 , 2 , 3 , 4 , 5 .  Here,  App i  

sense as p and p in Figure 1. 

To  simulate the effect of the thrust  vector deviation, 

Y i  

P Y 

The method used to resolve the components of force of an S-IC stage 

engine along the vehicle axis is shown in Figure 14. In t h i s  figure, the 

(X" , Y" , Z") t r iad has the same  orientation as the ( X  

F is the thrust  vector of engine i for  i = I ,2 ,3 ,4 ,  5 . Note that 

= 0 since the center engine does not gimbal (F igu re  I). 

Z ) tr iad.  m ' Y m '  m 
- 

ei 

Let Fexi, p p 5  = p y 5  
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.. , 

CG 

FIG. 14. RESOLUTION OF ENGINE FORCES 
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and Fezi be the components of F along the X",  Yff , Zf f  axes, Feyi ' ei 

respectively. F rom a n  inspection of Figure 14, it is easy  to show that 

F = IFeil/K exi 

- 
F eyi = lFeil tan ( p  Y i  + A p y i ) / K  

(4-19) 

( 4-20) 

and 

- 
F ez i  = - IFei ! tan ( p  Pi + a p p i )  /K ( 4-21) 

where 

The thrust  of each S-IC stage engine is a function of time and atmos- 

- 
pheric p re s su re  a t  the engine. IFei! is computed from the expression 

- 
IF . I  = F - PAAi , (4-22) 

ei vi 

where F PA is the atmos- 

pheric p re s su re  at the engine, and A.  is the exit area of engine i . F is 

predicted as a function of t ime. 

is the thrust  of engine i f ir ing in a vacuum, vi 

1 vi 

As  the vehicle's engines consume propellant, the vehicle CG and thus 

the origin of the (Xm , Ym , Z triad change with respect  to the vehicle 

f r ame .  A frame-fixed t r iad ( X  Y f ,  Z ) f '  f 

f o r  referr ing the location of the CG, the attach points of the engines, and 

) 

is defined to se rve  as a reference 
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certain aerodynamic character is t ics .  The origin of this t r iad is at the inter-  

section of the geometrical centerline of the vehicle and the plane that contains 

the attach points of the S-IC stage engines. The +X axis is directed along 

the stage centerline, and the Y and Z axes are parallel  to the Y and Z f f m 

axes, respectively. Thus, this is a right-hand triad with the same orientation 

f 

m 

as the (Xm , Y Z ) tr iad (F igu re  15) . m y  m 

An expression for  the moment of an S-IC engine about 

can now be derived. The total thrust  of an engine is assumed 

the vehicle CG 

to be applied 

at the attach point of the engine to  the stage. 

position of the vehicle CG with respect  to the attach point of engine i . 

definition, the moment 

Figure 15 shows the relative 

By 

of a vector v about a point 0 is 

- 
M = F x V  , (4-23) 

- 
w h e r e  F is the vector directed from point 0 to the point of application of V . 

- 
Therefore,  from Figure 15, the moment M. of the thrust  of engine i about 

1 

the vehicle CG is 

- - - -  
M. = F. x F = (Pi  - C G )  x Pei , 1 1 ei 

(4-24) 

where and 

engine i and the vehicle CG, respectively. 

are the frame-fixed position vectors of the attach point of 
i 

The above equation along with equations (4-19) , (4-20) , and (4-21) 

provide the total model with expressions fo r  computing the forces  and moments 

result ing from the thrust  of the S-IC stage engines. 
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A Newtonian potential function (Reference 1) is used to determine the 

ea r th ' s  gravitational acceleration vector at the vehicle CG. This function was 

discussed briefly in Chapter I. No further discussion of this function will be 
- 

presented he re  except t o  say that it uses  the position vector, PPu , of the 

vehicle CG re fe r r ed  to the ( U  , V , W) equatorial tr iad to compute the 

gravitational acceleration of the vehicle. 

The position vector will be computed from the vector Ec 

From 

U 

(position of the vehicle CG relative to the earth-centered t r i a d ) .  

Figures 9 and 11, 

- - - 
= R ( t = O )  + RSs ( 4-25) 

ppC S 

Then by equation (2-3) 

- . / 2 ]  [AzIx(R(t=O) + 5 S ) 
Y 

(4-26) 

- 
PP 

obtain the gravitational acceleration of the vehicle, GR . 

is used as the independent variable in the Newtonian potential function to 
U 

- 
U 

Since the equations of motion refer all translational motion of a vehicle 

to the surface tr iad,  it is convenient to r e fe r  the gravitational acceleration to 

it also.  Thus ,  by equation (2-2) 

_. T -  
- 71/21 GR 

U 
GRs = [Az],' [Ip, Y 

(4-27) 
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The gravitational force vector, r e f e r r ed  to the surface triad; can now 

be derived from an application of equation ( 3 - 7 ) ,  the first law of motion of 

Newtonian Mechanics. Hence, 

- - 
FGs = m GRs ( 4-28) 

where m is the m a s s  of the vehicle. 

A s  a vehicle flies through the ea r th ' s  atmosphere,  it experiences the 

- 
forces of buoyance and air friction. The buoyance force,  Fb , is assumed to 

have the same  direction as the position vector of the vehicle relative to  the 

center of the ear th .  Its magnitude is 

where V is the volume of air displaced by 

of the a i r  through which the vehicle is flying. 

A 

= vAp lGnsl PP C /IFF C I PJS 

( 4-29) 

the vehicle and p is the density 

Therefore,  

- -  
Notice that PP /' I PP I is a unit vector that has  the same direction as 

The point of application of Fb is assumed to be at  the vehicle's 

C C 
- 

( 4-30) 

- 
Fb ' 

CG. 

Therefore,  the moment of F about the CG is zero.  

Figure 16 shows a vehicle.moving through the ea r th ' s  atmosphere with 

Contact of the vehicle with 

b 

velocity 

particles of air produces a distribution of p re s su re  over the vehicle's ent i re  

surface.  

with respect  to the surrounding air .  

Rather than consider the p re s su re  distribution, its effect on the 
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motion of the vehicle is accounted for  by applying a suitable single force at 

a point on the vehicle 's  geometric centerline called the center of p re s su re  

( C P )  . T o  p rese rve  the laws of Newtonian mechanics, the single force,  

mus t  be equal to the vector sum of the forces  of the p re s su re  distribution, and 

the CP  must  be located at  a point that causes  the moment of F 

vehicle CG to  equal the moment of the pressure distribution about the CG. 

Since the p re s su re  distribution directly opposes the vehicle's relative velocity, 

FA has the same  sense as that of -RV . 

- 
FA ' 

about the 
A 

- - 

- 
The total force,  F A ,  is customarily resolved into two components. 

is the component normal to the vehicle's longitudinal Fn 3 

D , 

The normal force,  

axis  and the drag, is the component parallel to the longitudinal axis. 

Thus, to describe the aerodynamic force of the pressure distribution, the 

variation of F D ,  C P ,  a ,  a and E mus t  be specified. n '  Q 

For  a given Mach number and Q (angle-of-attack) , F and D are 
n 

proportional to the aerodynamic p res su re ,  Q , and the cross-sectional area 

of the missi le ,  A . Here, 

Mach = 1 6 I / V S  , (4-31) 

where VS is the velocity of sound in the a i r  surrounding the vehicle and 

Q = p I 5 l 2 / 2  (4-32) 

Because of these proportionalities, it is customary to write 

F - C n Q A  n 
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and 

(4-34)  D = C d Q A  

where C and C are dimensionless proportionality coefficients. n d 

Both coefficients and the distance from the origin of the (Xf , Yf , Zf) 

tr iad to the C P  are determined experimentally as functions of Mach and (Y . 

Resolution of F about into d rag  and normal  force and the moment of F A A 

the CG are directly dependent upon ci . Dependence on Mach accounts for 

variation of these three parameters  with a i r  temperature a s  well as relative 

velocity. The main variation in the velocity of sound arises from the fact 

that the velocity is proportional to the square root of the absolute temperature.  

RV is the difference between the velocity of the vehicle and the velocity 
- 

of the a i r  surrounding the vehicle. Since the ea r th ' s  atmosphere rotates with 

the ear th ,  the velocity of a i r  has  a component because of the rotation of the 
-- 

ear th,  (we) x pPc ) and a second component because of the velocity of the 
S 

- - 
air with respect  to the ear th ,  W . Thus, I tV  r e fe r r ed  to the (Xm, Ym) Zm)  

triad is 

e 

( 4-35) 
- 
RVm 

The parameters (Y and (Y (Figure 16) are determined from the L - 
components of RV . The expressions used for  computing them are m 

a -  - arc cos (2) 
lRVm 1 

(4-36)  
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and 

a Q = a r c t a n ( F )  RVZ , (4-37) 

where RV x ’  RV y and RV Z are the components of 

Z axes ,  respectively. 

m along the X m ’  y m ’  

m 

Expressions for the components of F along the vehicle-fixed axes A 

can now be established. F rom Figure 16, it is easy to see that 

(‘A) m == 1 ’  7 -D 

P -F s in  Q n 

in a i  -F COS CY 
- n  

( 4-38) 

where D and F are defined by equations (4-33) and (4-34) . n 

Equation (4-23) is used to determine an expression for the moment of 
- 
FA about the vehicle CG. From Figures 15 and 16,  it i s  apparent that 

- 
r m = [TI - E  m 

m 

where F- corresponds to  F in equation (4-23) and C P  is the distance from m 

triad to the C P  . Therefore,  the aerodynamic the origin of the ( X  

moment, M A ,  of FA about the CG is 

Y f ,  Z ) f ’  f 
- - 

(4-39) 

(4-40) 
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Since the atmospheric parameters  p , a i r  density, PA,  atmospheric 

pressure,  and VS , the velocity of sound, are functions of the altitude of the 

vehicle above the ear th ,  a n  expression for  altitude mus t  be derived. Figure 

17 shows a meridian through the polar axis of the ear th  that contains the posi- 
- 

tion vector, PPc, of the vehicle CG with respect  to the (X Y c '  ZC) 

t r iad.  The following expressions are obvious from an inspection of the figure. 

h' - lGcl - c 

(4-41) 

(4-42) 

(4-43) 

The variable h' 

to the actual altitude h . 

in equdtion (4-43) i s  assumed to be a close approxinmtion 

Expressions have now been developed for  all forces  and moments that 

a vehicle experiences as  i t  moves through the ea r th ' s  atmosphere.  Thus, 

expressions for the total force and moment vectors can now be obtained by 

algebraically combining the individual contributors. 

The total force is composed of the thrust  of the five S-IC stage engines, 

the force of gravity, the buoyance force,  and the aerodynamic force.  

the equation for the total force F is 

Thus, 

S 
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OF M E R I D I A N  W I T H  
E Q U A T O R I A L  P L A N E  

h h' 

IpP,l = c + h '  

a - E Q U A T O R I A L  R A D I U S  O F  E A R T H  

b - P O L A R  R A D I U S  OF E A R T H  

FIG. 17. A L T I T U D E  OF VEHICLE 
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T - - 
= [TsMIT ( Fei) + FGs + ( Fb) + [TSM] 

i=i S 
Fs 

(4-44) 

The total moment about the vehicle CG is composed of the moments 

resulting from the five S-IC stage engines and the aerodynamic force. 

Therefore,  the expression for the total moment vector,  
- 
Mm , is 

- M = (ezi)  + (MA) . m i=i m 
(4-45) 
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CHAPTER V 

NUMERICAL INTEGRATION 

The design of a complex and expensive vehicle system such a s  the 

Saturn V requires  an analysis of the response of a vehicle to different designs, 

vehicle engineering tolerances,  and various atmospheric conditions. Because 

a large part  of the analysis does not involve flexible motion of a vehicle, the 

rigid-body response can be predicted by electronic computer programs based 

on mathematical models like the one developed in this paper. P rograms  

of this type require  an efficient numerical  integration technique that will 

provide a solution within the accuracy of the data which describe the vehicle 

dynamic response character is t ics .  One such program, the liftoff program, 

was developed from the mathematical model presented in Chapters 11, 111, and 

IV . 

In a search for  the most  acceptable integration technique, the fourth- 

o rde r  Runge-Kutta formula and two of Dr . E .  B. Shanks' integration formulas 

were each used in the liftoff prograin to compute the f i r s t  stage trajectory of 

a typical Saturn V vehicle. Comparative data were generated for each formula 

over a range of integration step-sizes. Also ,  comparative data were 
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established for  a technique associated with one of D r .  Shanks' formulas 

that regulates the integration step-size, An analysis of these data and a 

description of the integration formulas are presented in this chapter. 

The three numerical  integration techniques to be compared are the 

fourth-order Runge-Kutta formula, the fourth-order formula developed on 

page 8 of Reference 5, which shall  be r e fe r r ed  to as  formula 4-3, and the 

fifth-order formula 5-5 presented in Reference 6. 

equations a s  they apply to a differential equation of the form y' = - dy - - f ( t ,Y)  

need be given since the system of first and second order  differential equations 

presented in Chapter III are reducible to an application of this result .  

Only a description of the 

dt 

The Runge-Kutta formula is presented f i rs t .  If the initial values of 

the differential equation y' = f (  t ,  y)  are t o ,  y o ,  the value of y at to + h 

is computed from the formulas 

f o  f ( t 0 ,  Yo) 

h 
2 

f 3  := f ( t 0  + h , yo + hfz) 

h 
6 

y = yo + - ( f o  + 2f, + Zf, + f3) 

evaluated in the given o rde r .  

books on numerical  analysis.  

A derivation of this technique is given in most 
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The formula 5-5 expressions fo r  determining the value of y at 

to + h are 

f o  = f ( t 0  J Yo) 

f i  = f ( t 0  + h/9000 , yo + hfo/9000) 

f ,  = f (  t o  + 3h/10., yo - 404. 7hfo + 405hfl) 

f 3  = f ( t 0  + 3h/4 yo + 2024ihfo/8 - 20250hf,/8 + i5hf,/8) ( 5-2) 

f 4  = f ( t 0  + h , yo - 93104ihfo/81 + 931500hfi/81 

- 490hfz/81 + iiZhf3/8i) 

Y = Y o +  1134 ( 105fo + 500f2 + 448f3 + 81f4) J 

where each formula is evaluated in the given o rde r .  

Formula 4-3 differs f rom the above formulas in that it u s e s  

f[to - h , y( to  - h ) ]  , the value of f at to - h,in computing y. The value of 

y at to + h is determined from the expressions 
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The fourth-order Runge-Kutta formula is used for the first integration 

step,  then formula 4-3 is used to continue the integration process.  

A method of controlling the integration step-size to obtain the required 

accuracy is presented in Reference 7. A method is introduced for computing 

an estimate of the integration e r r o r  made at each step.  The e r r o r  estimate,  

called a regulator, is used to determine the step-size for  the next integration 

s t ep .  

The regulator for  formula 4-3 is given in Reference 5. By combining 

the f .  of equation (5-3) by the formula 
1 

yi : yo + h(  -5f0 + f, + 12f2 - 2f3) /6 7 (5-4)  

a third-order solution for y at  to + h is obtained. The regulator, R , is 

defined to be the absolute value of the difference between the values of y 

computed from equations (5-3) and (5-4) ; that i s ,  

Thus, R is a fourth-order estimate of the third-order e r r o r .  Note that the 

number of additional calculations required to compute R are insignificant 

since the same  evaluations of f are used to compute both y and R , 

When the integration process  extends over a number of s t eps ,  the value 

of R can be monitored and used as  an e r r o r  indicator fo r  controlling the step- 

s ize .  T o  accomplish this, a lower l imit  L, and an upper l imit  L, ( G  < L, .: L2) 

are established for  R . A t  the end of each integration step,  R is compared 
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with these l imits.  If R < L, , the step-size is doubled; if R > L2 , the step- 

s i ze  is halved; if L, 5 R 5 L2 , 

step-size is changed, the fourth-order Runge -Kutta formula is used over the 

next s tep to establish a value for f ,  in  equation (5-3) . The integration 

process  is then continued with formula 4-3. 

the step-size is not changed. When the 

The differential equations of the liftoff program reduce to a system of 

twelve f i r s t  o rde r  differential equations. Thus,  twelve distinct values of R 

can be calculated at the end of e a c h  integration step. Which of the twelve 

values of R o r  what combination of the twelve values of R should be moni- 

tored for controlling the integration step-size is an important question that 

must b e  answered in o rde r  to effectively use this procedure in the liftoff 

program. 

of R are most  sensitive to  the total accuracy of formula 4-3 in  integrating 

the equations of motion. 

described more easily after the comparative data for the three integration 

routines a r e  presented. 

This question can be answered by determining which distinct values 

The data required to obtain this information can be 

Before the comparative data were generated, a computer program was 

written and verified for  each of the three integration formulas.  The programs 

were written for the SDS-930 computer a t  Marshall Space Flight Center in 

Huntsville, Alabama. The differentia1 equation x2yTr + 2xy' + 2y + 4 + x : 0 

which has  y = clx + c2/x2 - 2 + x2/4 as a general  solution was chosen to be 

used in verifying the programs. Choosing x = i , y = 1/4 , and y' = -25/8 

as initial values, the exact solution for  x f 0 becomes y = x/8 + 15/8x2 + x2/4. 
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This  equation was then numerically integrated over the interval x = . 1 to 

x = 5 to obtain the following data. 

Runge -Kutta 4-4 Formula 4-3 Formula 5-5 

Step -Size 

. i o  
05 

.025 

. O l  

.005 

.0025 

.001  

.0005 

E r r o r  

. i o x  i o 4  

. 9 5  x IO2 

. 6 5 x  10' 

. I 6  x IOo 

. l o x  lo-' 

.62 x 

.16 x 

.30 x 

Step -Size - 

. i o  

.05  

.025 

. o i  

.005  

.0025 

.001  

.0005 

E r r o r  

i i  i o4  

. I O  x i o 3  

.61 x 10' 

. 53  x 10-1 

.32  x 10-1 

.60 x IO- '  

.46 x 

. 5 9 ~  

- Step-Size 

. i o  

. 0 5  

.025 

. o i  
-005  

.0025 

- 0 0 1  

E r r o r  

. I O X  i o 3  

. I 5  x i o o  

.46 x 10' 

. 1 5 x  

.48 x 

.12 

.28 x IOe5 

Next, the trajectory pa rame te r s  to be analyzed for  comparing the 

different integration formulas in the liftoff program had to be selected. A 

t ime history of the vehicle position and orientation with respect  to the 

( X S ,  Y S '  Z ) 

reason, the pa rame te r s  xs , y s p ,  z s  , q p ,  q y ,  and cp 

ones to be contrasted. 

tr iad basically defines the vehicle trajectory.  For  this 

are the obvious 
P P r 

Selection of data for use in generating the comparison resul ts  

was the next task.  Data which represent  the dynamic character is t ics  of a 

typical Saturn V vehicle were chosen. Large dynamic disturbances were 

imposed on the t ra jectory by failing an S-IC stage outboard engine 70 seconds 

after liftoff and disturbing the atmosphere with a wind that peaked immediately 

following the engine failure (F igu re  18) . The wind was directed normal to the 
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vehicle flight path in  the direction that would create a n  aerodynamic moment 

on the vehicle having the same sense as the moment created by the engine 

failure. When the ent i re  wind profile is increased by 1 meter-per-second, the 

control system is incapable of continuing to control the vehicle's attitude af ter  

the engine failure.  That i s ,  the aerodynamic moment forces  the vehicle to 

begin to  tumble. Thus, the chosen trajectory is representative of nominal 

flight before 70 seconds and highly disturbed flight thereafter.  

The liftoff program is written in single-precision for  a CDC-3200 

computer a t  the Marshall Space Flight Center in Huntsville, Alabama. 

( Single-precision on this computer means that eleven digits other than the 

exponent a r e  assigned to each floating point number. )  Tables 1, 2, and 3 

present comparative data obtained from this program for different integration 

formulas and step-sizes at the 70, 80, and 90 second time points of the 

trajectory.  

in case any one formula i s  biased a t  any one of the time points. 

The three different t ime points in the trajectory are presented 

The data presented in the tables were obtained from an on-line printer 

while the t ra jector ies  were being computed. 

does not print and compute simultaneously, run t ime i s  affected by the amount 

of output obtained. 

obtained from the t ra jector ies  for which the computation t imes are presented 

in Tables 1, 2, and 3 .  During the first 70 seconds of each trajectory,  output 

was obtained every 10 seconds; for  the remainder of the trajectory output 

was obtained every 5 seconds. 

Since the CDC-3200 computer 

F o r  this reason, only a small  amount of output was 
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Some way of comparing the accuracy of the solutions presented in the 

tables must be established in order' to evaluate the comparative data. A t  

present, no means of determining an exact solution to a trajectory based on a 

specific set of vehicle dynamic data exist. A review of Tables i, 2, and 3 

reveals that the differences between the solutions reached by the three formu- 

las  are less than i percent in all parameters except the roll and yaw attitude 

angles which differ less than 4 and 6 percent, respectively, a t  the 90 second 

time point. Therefore, it shall be assumed that the exact solution does not 

differ more than these percentages from the solution reached by any one of the 

formulas. Based on this assumption, the accuracy of each formula can be 

judged by whether the difference between the solution it reached and the 

solutions reached by the other two formulas is within the accuracy of the data 

that describe the dynamic characteristics of the vehicle. 

Because of hardware and engineering tolerances, the dynamic charac- 

teristics of a vehicle cannot be predicted exactly. Publications that present 

the dynamic data for a particular Saturn V vehicle give the statistical varia- 

tions of the data. The one-sigma data tolerances are listed in Table 4. The 

effects of these tolerances on the trajectory when applied to the dynamic data 

used to generate Tables i ,  2, and 3 were assessed using formula 4-3 with an 

integration step-size of . 125. Tables 5, 6, and 7 give the solution of the tra- 

jectory at 70, 80, and 90 seconds, respectively, with the specific tolerances 

applied in both the most helpful and most harmful way. Here, the most helpful 

way is defined to be an application of the tolerance that reduces the effect of the 
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engine failure and wind disturbances; the most harmful way is defined to  be an 

application of the tolerance that increases the effect of the engine failure and wind 

disturbances. The effect of each tolerance can be assessed by comparing the 

formula 4-3 solution of Tables I, 2, and 3 with Tables 5, 6 ,  and 7. 

A comparison of Tables 5, 6 ,  and 7 with Tables I, 2, and 3 shows 

that differences in the solutions reached by all three integration techniques 

are within the accuracy of the Saturn V dynamic data. Therefore, by this 

method of judging accuracy, all three integration techniques a re  acceptable 

from an accuracy stand point. 

A study of Tables i, 2, and 3 reveals that formula 4-3 would be the 

most desirable integration formula to use in the liftoff program from a stand- 

point of computer run time, accuracy, and stability of the solution. A t  all 

three time points, the three formulas reach a stable solution at the same 

step-size. Also, the solution reached by formula 4-3 does not differ signifi- 

cantly from the solutions reached by the other formulas, and this difference 

is within the accuracy of the input data. 

Kutta solution and the formula 4-3 solution a r e  so small that the solutions are, 

for all practical purposes, identical. This fact is important since the fourth- 

order Runge-Kutta formula is presently being used almost exclusively in all  

digital trajectory programs at Marshall Space Flight Center. Computer time 

would be saved by use of the formula 4-3 since it requires less computation 

time for a given step-size than the other two formulas. 

The differences between the Runge- 
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A s  previously stated, the input data chosen for this study resulted in a 

trajectory that has  both nominal and highly abnormal vehicle dynamics. The 

first 70 seconds of the trajectory represents  normal dynamics since the 

vehicle is disturbed only by a wind. 

wind resulted in dynamics which very closely approached control l o s s  following 

An engine failure in combination with the 

70 seconds. Thus, the formula 4-3 has  proven to be the most  practical  formula 

for  integrating both nominal and highly off-nominal vehicle dynamics. 

With the 4-3 formula established a s  a practical  one to use in the liftoff 

program, an investigation of the value of tk formula 4-3 regulator for control- 

ling the step-size in the program becomes a logical extension of this analysis. 

A s  previously stated,  twelve distinct values for  the regulator can be obtained 

at each integration s tep in the liftoff program. Effective control of the step- 

s ize  requires  a regulator that is sensitive to  the total accuracy of the integra- 

tion process.  Since all the pa rame te r s  obtained by integration are related 

through the differential equations, the selected regulator must be a function 

of the regulators for the parameters  that contain the largest  percentages of 

integration e r r o r .  Here,  the percentage of integration e r r o r  for  a parameter  

is defined to be: 100 x integration e r r o r  + absolute magnitude of the param- 

eter. By assuming a regulator to be a good approximation of the actual integra- 

tion e r r o r ,  we can determine these parameters  by analyzing the twelve regula- 

tor  values for  various integration step-sizes.  Figures 19  through 30 present 

the t ime variations of the twelve difference regulators f o r  integration step- 

s i zes  f rom .03125 to . 50  . The Saturn V dynamic data used to generate 

Tables 1, 2,  and 3 were also used to generate these figures.  

78 



Table 8 lists the twelve parameters  that are integrated and gives the 

largest percentage of e r r o r  associated with each one. The largest  percentage 

of e r r o r  for  a parameter  was computed by using the peak value of the param- 

e t e r ’ s  regulator a t  a step-size of . 50 as the maximum integration e r r o r .  

Table 8 indicates that the regulators for w w , and w are the ones mos t  

sensitive to  the total accuracy of the integration process .  A comparison of the 

regulators fo r  these three parameters  (F igu res  25, 26, and 27) with the other 

nine regulators verifies this.  

to the engine failure and wind gust disturbances at 70 seconds was much 

greater  than the response of the other nine regulators.  

x’ Y Z 

That is, the response of these three regulators 

With the regulators for  w d , and w established as the ones mos t  x’ Y Z 

sensitive to the total integration accuracy, the question of how to combine 

them into one total regulator must now be answered. 

show that the regulator for w is approximately ten tinies l a rge r  than the 

regulators for w and w . This  prevents the three regulators f rom being 

combined directly. Equation (3-33) shows that any disturbance that affects 

the rol l  attitude also affects the pitch and yaw attitude. 

w M d p r / d t ,  w = dpp/dt , and w = d p  /dt . )  Based on these two facts,  

the decision was made to use the root-sum-square of the regulator for  w 

and w z  as the total regulator for controlling the step-size in the liftoff pro- 

gram. Figure 31 presents the t ime variation of the total regulator for step- 

s i zes  f rom .03125 to .50.  

Figures 25, 26, and 27 

X 

Y Z 

(Notice that 

X Y Z Y 

Y 
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Limits mus t  be established for  this regulator in o rde r  to use it to 

control the integration step-size. These limits are used in combination with 

maximum and minimum restr ic t ions on the step-size to maintain an acceptable 

integration e r r o r .  The step-sizes required to obtain an acceptable solution 

can be determined from Tables  1, 2,  and 3 .  F r o m  liftoff to 70 seconds, a 

step-size of .50 is acceptable; f rom 70 to 90 seconds a step-size between 

. 125 and . 2 5  is required.  Thus, the maximum and minimum restr ic t ions on 

the step-size would be .50 and .125,  respectively. The upper limit, 

f o r  the total regulator can be established f rom Figure 31. 

the regulator for a step-size of . 5 0  does not exceed .00025. 

seconds, the regulator exceeds .00025 once for  a step-size of . 125 and twice 

for  a step-size of .25.  Therefore,  L, was chosen to be .00025. An effective 

value for  the lower limit, L, , was established f rom a tabulation of the t ime 

variation of the total regulator with step-size. A value of .00005 was chosen 

fo r  L, since this value would allow the step-size to increase only when the 

regulator began to reach a significant peak. These values fo r  L, and L, 

were verified as being reasonable by a number of computer runs using small 

variations to these numbers.  The Saturn V dynamic data used to generate 

Tables 1, 2, and 3 were also used in these verification runs.  Since the above 

regulator and step-size limits were established for  a trajectory that contains 

both nominal and highly disturbed dynamics, they should be valid for  any 

t ra jectory required by a vehicle design o r  design assurance study. 

L, , 

Before 70 seconds, 

Following 70 

80 
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The formula 4-3 routine for the liftoff program w a s  modified to use 

the total regulator,  R , for  controlling the step-size. If R < L, , the 

step-size is doubled; if  R > Lz , the step-size is halved; i f  L, 5 R 5 Lz , 

the step-size is not changed. However, before the step-size is changed, the 

value to which the step-size is to be changed is checked to make s u r e  it is not 

outside the step-size restrictions.  

With L, = .00005 , L, = .00025 and .50 and . I 2 5  as  the maximuin 

and minimum step-size, respectively, a trajectory was computed with the 

modified formula 4-3 routine. 

and 90 second time points is presented by Table 9. Th i s  solution i s  not only 

more  accurate than the formula 4-3 solution with a step-size of . 25  (Tables  

I ,  2, and 3) , i t  a l so  required 25 percent l e s s  computer t ime. Thus,  the 

The solution of this trajectory a t  the 70, 80, 

chosen regulator has  been shown to be an  effective indicator for controlling 

the integration e r r o r  and reducing the computer tiine. 

This  chapter has  established that the fourth-order formula 4-3 i s  a 

practical  integration formula to use in the liftoff program. Since this program 

contains the basic differential equations of motion of which most rigid-body 

trajectory programs are composed, the formula 4-3 numerical  integration 

routine has  been shown to be more  practical t o  use in these programs than 

either the fourth-order Runge-Kutta formula or  the fifth-order formula 5-5. 

In addition, the technique for  controlling the integration step-size associated 

with the formula 4-3 has been shown to effectively increase the efficiency of 

the formula by as  much as 25 percent when the t ra jectory being computed 

contains large dynamic disturbances. 
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Table 1. Solution of Trajectory a t  70 Seconds 
I I 

Ste p-Size xs 
P ysP 

z s  
P 

Time'" (min) 

I Formula 4-3 I 
.03125 -28.7873 -. 4728 .0027 8947.70 11009.18 36465. 81 23.646 
.0625 -28.7873 -. 4728 .0027 8947.69 11009.17 36465.80 12.066 
.125 -28.7873 -. 4725 .0027 8947.18 11009.17 36465.73 6.306 
.25  -2 8.7873 -. 4729 0027 8947.88 11009.14 36465.72 3.321 
.50  -28.7872 -. 4717 .0027 8946.41 11009.13 36465.54 2.005 

I 

Runge-Kutta Formula 

.03125 -28.7873 -. 4726 .0027 8947.34 11009.19 36465.79 30.814 
36465.78 15.650 .0625 -28.7873 -. 4726 .0027 8947.38 11009.18 

.125 -28.7873 -. 4724 .0027 8947.15 11009.18 36465.72 8.075 

.25  -28.7874 -. 4727 .0027 8948.00 11009.14 36465.69 4.258 

.50  -28.7873 -. 4709 .0027 8946.41 11009.14 36465.43 2.432 
~~ 

I 

Formula 5-5 

.03125 -28.7876 -. 4743 .0027 8950.43 11009.00 36465.65 42.697 
21.431 .0625 -28.7876 -. 4741 .0027 8950.10 11009.02 36465.75 

. I 2 5  -28.7876 -. 4740 .0027 8950.11 11009.06 36465.75 10.820 

. 2 5  -28.7875 -. 4732 .0027 8949.16 11009.05 36465.65 5.663 

. 5 0  -28.7873 -. 4719 .0027 8 947.76 11008.96 36465.74 3.185 

::: Actual computer time used for  computing the f i r s t  90 seconds of the trajectory.  This number does not 
include time used in loading deck o r  reading data. 



Table 2. Solution of Trajectory a t  80 Seconds 

~~ ~ ______ ~~ 

.03125 -38.6932 -16.2973 -12.3574 12184.00 12036.10 

.0625 -38.6962 -16.3158 -12.3661 12183.63 12036.12 

.125 -38.6922 -16.2869 -12.3540 12183.64 12036.23 
~ . 25  -38.6869 -16.2431 -12.3358 12182.59 12036.48 
~ .50 -38.6550 -15. 9663 -12.1963 12181.28 12037.31 

Step -Size xs 
P ysP 

z s  
P 

Time"' (min) 
~ ~~ 

Formula 4-3 

.03125 -38.7233 -16.5128 -12.4525 12180.78 12036.13 42546.21 23.646 
12036.11 42546.19 12.066 .0625 -38.7237 -16.5187 -12.4552 12180.74 

. I 2 5  -38.7233 -16.5169 -12.4545 12180.19 12036.18 42546.11 6.306 

.25 -38.7158 -16.4344 -12.4212 12181.15 12036.22 42546.14 3.321 

.50 -39.0284 -18.5710 -12.8615 12177.08 12031.53 42545.32 2.005 
~ ~~~ 

Runge-Kutta Formula 

.03125 -38.7211 -16.5001 -12.4479 12180.36 12036.18 42546.18 30.814 

.0625 -38.7266 -16.5366 -12.4628 12180.38 12036.11 42546.15 15.650 

.125 -38.7215 -16.4964 -12.4460 12180.17 12036.24 42546.10 8.075 

.25  -38.7129 -16.3931 -12.4018 12181.32 12036.36 42546.13 4.258 

.50 -38.9201 -17.8007 -12.7405 12177.60 12032.99 42545.28 2.432 
I 

Formula 5-5 

42546.09 
42546.23 
42546.25 
42546.14 
42546.33 

42.697 
21.431 
10.820 

5.663 
3.185 

':: Actual computer time used fo r  computing the f i rs t  90 seconds of the trajectory. This number does not 
include the time used in loading the deck o r  reading data. 



Table 3. Solution of Trajectory a t  90 Seconds a, 
tP 

I 

Step-Size 
'Y 'r 

xs 
P ysP 

zs 
P 

Time" (min)  

Formula 4-3 

23.646 .0312$ -44.9268 15.9817 7.6516 15575.30 12678.83 49598.65 
0625 -44.9276 16.0061 7.6691 15575.20 12678.51 49598.58 12.066 

.125 -44.9273 15.9925 7.6596 15574.61 12678.68 49598.49 6.306 

. 2 5  -44.9169 15.6544 7.4057 15576.48 12682.91 49599.23 3.321 

.50 -44.3560 19.4485 9.7651 15545.42 12518.26 49581.74 2.005 

R unge -K ut ta Formula 

.03125 -44.9252 15.9302 7.6136 15574.95 12679.55 49598.69' 30.814 

.0625 -44.9300 16.0834 7.7227 15574.63 12677.58 49598.39 15.650 

.125 -44.9254 15.9176 7.6010 15574.76 12679.82 49598.62 8.075 
* 25 -44.9133 15.5145 7.2618 15577.00 12685.16 49599.52 4.258 
.50 -44.8984 20.0205 9.9560 15557.96 12592.42 49587.85 2.432 

Formula 5-5 

.03125 -44.8996 15.0857 6.8810 15580.62 12689.61 49600.12 42.697 

.0625 -44.9021 15.1658 6.9562 15580.09 12688.74 49600.16 21.431 

.125 -44.8990 15.0514 6.8434 15580.31 12690.27 49600.40 10.820 

.25  -44.8951 14.8850 6.6719 15579.45 12692.71 49600.52 5.663 

.50 -44.8646 13.8237 5.8255 15580.10 12706.29 49602.60 3.185 1 

+ Actual computer time used for computing the first 90 seconds of the trajectory. This number does not 
include the time used in loading the deck o r  reading data. 



Table 4. One-Sigma Data Tolerances 
~. 

Tolerance Number Tolerance 

1 . 1 degree thrust  vector misalignment of each 
S-IC stage engine in the same  direction 

2 

3 

4 

5 

6 

7 

. 3  percent variation of the total thrust  magnitude 
of the S-IC stage engines 

2/3 inch la teral  deviation of the predicted 
location of the missile center-of-gravity 

2/3 meter  variation of the predicted aerodynamic 
center -of-pressure 

2 percent variation of the predicted aerodynamic 
normal force coefficient C 

3.33 percent variation of the predicted 
aerodynamic drag coefficient C 

N 

d 

2722 kilogram Variation in the predicted initial 
m a s s  of the missi le  
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00 
Q) Table 5. Effects of One-Sigma Data Tolerances on Solution of Trajectory a t  70 Seconds 

Tolerance" 
Number 

xs 
P ysP 

zs 
P 

+I 
-1 

+2 
-2 

+3 
-3 

+4 
-4 

+5 
-5 

+6 

i 

-6 

+7 
-7 

-28.7017 
-28.8730 

-28.8044 
-2 8.7734 

-28.8178 
-28.7569 

-28.7886 
-28.7860 

-28.7874 
-28.7871 

-28.7895 
-28.7852 

-28.7925 
-28.7824 

-. 3893 
-. 5559 

-. 5687 
-. 3990 

-. 4992 
-. 4461 

-. 4015 
-. 5442 

-. 4647 
-. 4803 

-- 4849 
-. 4613 

-. 4997 
-. 4473 

.0031 

.0022  

.0029 

.0033 

-. 0347 
.0400 

.0032 

.0022 

.0027 

.0028 

.0027 

.0028 

.0026 

.0029 

8949.35 
8944.70 

9062.40 
8831.88 

8945.35 
8948.84 

8947.15 
8947.22 

8947.17 
8947.20 

8962.74 
8 933.03 

8983.45 
8910. 99 

11054.09 
10964.07 

11007.56 
11010.71 

10974.86 
11043.34 

11013.52 
11004.87 

11010.91 
11007.46 

11008.95 
11009.34 

11008,58 
11009.76 

36401.81 
36529.69 

36479.13 
36452.34 

36514.07 
36417.43 

36465.78 
36465.68 

36465.73 
36465.73 

36467.89 
36463.56 

36470.28 
36461.20 

The tolerances are defined by Table 4. A positive tolerance number indicates that the tolerance was  applied 
in the most helpful way; a negative tolerance number indicates that the tolerance was applied in the most 
harmful way. 
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Table 6. Effects of One-Sigma Data Tolerances on Solution of Trajectory at 80 Seconds 

Tolerance ’‘ 
Number 

xs 
P ysP 

zs 
P 

+I 
-1 

+2 
-2 

+3 
-3 

+4 
-4 

+5 
-5 

+6 
-6 

+7 
-7 

-38.3341 
-39.1924 

-38.4141 
-40.1522 

-38.6592 
-38.8017 

-38.1799 
-41.5404 

-38.3416 
-39.3255 

-38.5942 
-38.7556 

-3 8.4446 
-39.0920 

-14.9379 
-1 8.3642 

- 9.7470 
-26.3994 

-16.1072 
-16.9819 

- 9.4252 
-32.0683 

-13.8243 
-20.0300 

-15.3986 
-16.9253 

-14.0336 
-19.2638 

-11.5715 
-12.5339 

- 6.2857 
-13.3281 

-12.4730 
-12.3504 

- 5.8506 
-13.3339 

-10.6210 
-12.8337 

-11.9084 
-12.6127 

-10.8898 
-12.8763 

12184.76 
12175.13 

12334.38 
12025.63 

12177.77 
12182.35 

12185.03 
12172.33 

12181.95 
12178.20 

12203.54 
12159.15 

12229.68 
12130.81 

12094.26 
11 977.75 

12040.72 
12032.69 

11994.18 
12077.95 

12057.55 
12010.78 

12043.89 
12028.17 

12036.76 
12037.06 

12037.04 
12035.54 

42468.09 
42624.17 

42573.47 
42518.46 

42604.66 
42487.61 

42546.86 
42544.29 

42546.19 
42545.95 

42551.62 
42540.83 

42555.64 
42536.59 

’: The tolerances are defined by Table 4. A positive tolerance number indicates that the tolerance was applied 
in the most helpful way; a negative tolerance number indicates that the tolerance was applied in  the most 
harmful way. 



to 
to Table 7. Effects of One-Sigma Data Tolerances on Solution of Trajectory a t  90 Seconds 

Tolerance" 
Number 

cp 
P 'r xs 

P ysP 
zs 

P 

+1 
-1 

' +2 
-2 

+3 
-3 

+4 
-4 

+5 
-5 

+6 

I 

-6 

+7 
-7 

-44.7510 
-44.2339 

-44.1665 
-42.73 76 

-44.9339 
-44.9066 

-44.1551 
-50.6667 

-44.6586 
-209.788 

-44.8128 
-44.9548 

-44.6642 
-42.6074 

10.3892 
18.2383 

2.7922 
-37.5092 

14.5655 
17.6410 

1. 9187 
-46.7982 

8.0330 
-17.8573 

11.8636 
17.4259 

8.8958 
10.6717 

4.7007 
9.0583 

.9414 
-407.550 

6.7857 
8.1382 

.5546 
-466. 011 

3.5145 
-289.193 

5.6754 
8.4833 

3.9456 
5.3222 

15592.16 
15543.26 

15798.29 
14636.99 

15574.91 
15573.06 

15614.33 
14696.97 

15593.61 
15343.07 

15614.90 
15541.61 

15652.43 
15463. 93 

12816.49 
12455.62' 

12862.91 
12306.83 

12647.18 
12704.55 

12890.09 
12333.00 

12787.78 
12191.16 

12727.34 
12659.01 

12771.53 
12418.64 

49514.55 
49678.34 

49682.44 
48931.55 

49699.56 
49526.97 

49635.84 
48871.73 

496 14.93 
49450.16 

49616.93 
49584.86 

49630.58 
49556.72 

:k The tolerances a r e  defined by Table 4. A positive tolerance number indicates that the tolerance was applied 
in the most  helpful way; a negative tolerance number indicates that the tolerance was applied in the most  
harmful way. 



Table 8. Integration E r r o r  Percentages 

Maximum Percentage 
of 

Parameter Integration E r r o r  

XSP 

dX /dt 
s 

YSP 

dYs /dt 

Z SP 

dZ /dt 
s 

W 
X 

W 
Y 

w z 

(pP 

(pY 

'pr 

.38 x 

. 1 2 x  l o o  

. 2 9  x 

. 22  x l o o  

.12 x 10- 

. 2 8  x l o o  

. 4 3  x l o 1  

. 1 9  x 10' 

.20 x lo1 

. 9 3  x 

. 7 7 x  l o o  

.82 x 10' 

89 



Table 9. Formula 4-3 Solution of Trajectory with Variable Step-Size 
~ ~~ 

xs YS zs Computer 
Time (min) cpP Y 'r P P P 

cp Trajectory 
Time ( s e c )  

70 -28.7874 - .4726 .0027 8947.90 11009.12 36465.63 

80 -38.7193 -16.4557 -12.4490 12181.17 12036.17 42546.04 

I 12681.74 49598.98 2. 46G"' 90 -44.9181 15.7993 7.5117 15576.26 

* Actual computer time used for  computing the first 90 seconds of the trajectory.  This number does not 
include time used in loading deck o r  reading data. 
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